4.1 Introduction 181

lational calculus. We look at these in more depth in Sections 4.3 and 4.4, respec-
tively. ,

Example 4.4 looks at the relational rules that define cestain properties that the
database must satisfy. :

Example 4.4 If we intend to keep only information on currently available DBMS pack-

4.1.1

ages in our database, we could specify that in our VERSION relation the
release year of a version not go beyond the current year. We could also
specify that the DBMS name be unique. With the unique name and tuple
properties, it is apparent that the name determines the company that pro-
duces the DBMS and its data model. We may conclude that Name uniquely
determines Company and Name uniquely determines Data_Model. B

This unique identification is an integrity constraint, which ensures that each
instance of an entity is distinguishable. Functional dependency is also a form of
constraint, as it specifies which combination of values is legal. Certain constraints
are defined in terms of functional dependencies between the attributes and form the
basis of the normalization theory (see Chapters 6 and 7). The entity and referential
integrity rules are two general rules that all relational databases are expected to sat-
isfy. Both rules will be studied in Section 4.2.8. Additional rules may also be defined
for the application in hand.

Relational database theory borrows heavily from set algebra; therefore a brief
review of set concepts is given in the following section. Some data manipulation
languages make use of first-order predicate calculus and the relevant material is
briefly covered in Section 4.4. The material presented here is not exhaustive but
should be sufficient to understand the relational model.

A Brief Review of Set Theory

A set is well-defined collection of objects. It is commonly represented by a list of its
elements (called members) or by the specification of some membership, condition.
The intension of a set defines the permissible occurrences by specifying a member-
ship condition. The extension of the set specifies one of numerous possible occur-
rences by explicitly listing the set members. These two methods of defining a set are
illustrated in the following example.

Example 4.3 Intension of set G: {g|g is an odd positive integer less than 20}

Extension of set G: {1,3,5,7,9,11,13,15,17,19} ®

A set is determined by its members.. The number 3 is a member of the set G
and this is denoted by 3 € G. Given an object g and the set G exactly one of the

184

Chapter 4 The Relational Model

Note that the value of 255 in Example 4.10 may appear to have been arbitrarily
chosen. The range in fact neatly fits into a 8-bit byte. In practical database design,
as in this example, the choices are never arbitrary but depend on the system require-
ments.

Example 4.11 In the development of a software package, an estimate of the number of

lines of code is made and this can only be a positive integer greater than
zero. We can therefore define a domain consisting of only positive integers
for this application. W

The domain D;, a set having ‘‘homogeneous’’ members, is conceptually similar
to the data type concept in programming languages. A domain, like a data type, may
be unstructured (atomic) or structured. Domain D; is said to be simple if all its
elements are nondecomposable (i.e., atomic). (When we-use the term decomposable,
we mean in terms ¢f the DBMS.) In typical DBMSs, atomic domains are general
sets, such as the sets of integers, real numbers, character strings, and so on. Atomic
domains are sometimes referred to as application-independent domains because
these general sets are not dependent on a particular application. We can also define
application-dependent domains by specifying the values permitted in the particular
database. Structured or composite domains can be specified as consisting of nona-
tomic values. The domain for the attribute Address, for instance, which specifies
street number, street name, c1ty, state, and zip or postal code is considered a com-
posite domain.

It is unfortunate that many-of the currently available commercial relational da-
tabase systems do not support the concept of domains. Such support of both appli-
cation-independent and user-defined domains specified as types in programming lan-
guages allows for the validation of the value assigned to an attribute.

Attributes are defined on some underlying domain. That is, they can assume
values from the set of values in the domain. Attributes defined on the same domain
are comparable, as these attributes draw their values from'the same set. It is mean-
ingless to compare attributes defined on different domains, as exemplified below.

Example 4.12 Assume that in a given city house numbers are between 0 and 255. The

domain H_Number for the attribute House_Numbers can be defined to be
the set of values from O to 255. The attribute House_Numbers is defined
over the same domain as Age (Example 4.10) and without any additional
constraints, they, are comparable. Semantically, we say that the domain of
Age represents a value that is a measure of a number of years and the do-
main H_Number represents a part of an address. Therefore, comparing the
age in years of persons with the house number part of an address is mean-

1.2 Relational Database 188

ingless. Consequently, we have to consider the domain of House_Numbers
as -distinct from the domain of Age. and these domains -are not com-
patible. &

It is possible, however, to relax the above rule for two semantically compatible
domains D; and D; where D; N D; # . Then attribute A; defined on domain D; and
attribute A; defined on D; can be compared if 3, € D; N D; and a; € D; N D;. Here,
a; and a; are the values of attributes A; and A;, respectively.

It has become traditional to denote attributes by uppercase letters from the be-
ginning of the alphabet. Thus, 4, B, C, . . . , with or without subscripts denote
attributes. In applications, however, attributes are given meaningful names. Sets of
attributes are denoted by uppercase letters from the end of the alphabets such as
... X Y, Z .

Using the concept of attributes and domains, we can now define a tuple.

4.2.2 Tuples

An entity type having n attributes can be represented by an ordered set of these
attributes called dn n-tuple. Assume that these n attributes take values from the
domains Dy, . . . ,.D,. The representation of the entity must then be a member of
theset D, X D, X . . . X D,, as the resulting set of this cartesian product contains
all the possible ordered n-tuples.

Example 4.13 A job applicant may be characterized for a particular application by her or
his name, age, and profession. An applicant, John Doe, who is 55 years old
and is an analyst, may be represented as a 3-tuple: *‘John Doe, 55, analyst’’
(Figure F). This is a possible ordered triple obtained from the cartesian prod-
uct of the domain for attributes Name, Age, and Profession. The implication

of this 3-tuple is that an instance of the entity type has the value John Doe
for its attribute Name, the value 55 for Age, and the vaue analyst for

Profession. B
Figure F Representation of a association among attributes.
Applicant
-
| [|
Name is Ageis Profession is
John Doe 55 analyst

Chapter 4 The Relational Model

424

The value n (the number of attributes in the relation) is known as the degree or
arity of the relation. A relation of degree one is called an unary relation, of degree
two a binary relation, and of degree n an n-ary relation.! Attribute names could be
considered a convenience rather than a formal requirement. However, when a num-
ber of attributes of a relation are defined on the same domain, the importance of
unique attribute names becomes evident. Codd (Codd 70) originally described the
relational model referring only to domains.

We formally represent a relation R as a 4-tuple:

R(le ANRv n, m)

where Ty represents the set of tuples, m = |Ty| is the cardinality of the relation (i.e.,
the number of tuples in the relation), ANy represents the set of attribute names, and

= |ANg] is the cardinality of the set of attribute names (the degree or arity of the
relation).

In the above definition of a relation, we have specified the relation having these
constituents: a set of tuples, a scheme (or set of attribute names), the degree, and the
cardinality of the relation. The last two are conceptual values as they can be obtained
from the set of attributes and tuples, respectively.

It is therefore more usual to represent the relation R defined on a relation scheme
R in terms of just the scheme and set of tuples. The set of tuples of a relation, unless
there is confusion, can be expressed by the name of the relation. We shall use an
uppercase letter to represent both the relation name and its set of tuples and a bold
uppercase letter for the relation’s scheme and its set of attributes. This gives us a
shorter form of the representation of a relation as simply R(R). The degree (or arity)
of the relation is given by the number of attributes in scheme R, i.c., [R|, while the
cardinality of the relation is given by the number of tuples in R and is indicated by
[Rl. As such, R(R) represents the relation R defined on scheme R having the set of
tuples R.

We discuss other methods of representing a relation in the following section.

Relation Representation

Conceptually, a relation can be represented as a table. Remember that the contents
of a relation are positionally independent, while a table gives the impression of po-
sitional addressing. Each column of the table represents an attribute and each row
represents a tuple of the relation. Figure 4.2 shows the tabular representation of the
APPLICANT relation of Example 4.13.

It is a myth that a relation is just a flat file. A table is just one of the conceptual
representations of a relation. It is possible to store the relations using, for instance,
inverted files. - ‘

As seen in Section 4.2.2, a tuple may be represented either as a labeled n-tuple
or as an ordered n-tuple. The labeled n-tuples are represented using distinct attribute
names A;, Aandthevaluesa,,...,a.,fmmtlwcorrespondmgdommns
The labeled n-tuples consist of unordered attribute value pairs: (A,:a,, .

o o 9

4.2 Relational Database 159

Figure 4.2 Example representation of a relation as a table.

APPLICANT:
Name Age Profession

John Doe 55 Analyst

Mirian Taylor 31 Programmer
Abe Malcolm 28 Receptionist
Adrian Cook 33 Programmer
Liz Smith 32 Manager

A,:a,). Ordered n-tuples are represented simply as (a;, . . . , a,), where the value;

appear in the same order as their domains in the cartesian product of which the
relation is a subset.

425 Keys

In the relational model, we represent the entity by a relation and use a tuple to
represent an instance of the entity. Different instances of an entity type are distin-
guishable and this fact is established in a relation by the requirement that no two
tuples of the same relation can be the same. It is possible that only a subset of the
attributes of the entity, and therefore the relation, may be sufficient to distinguish
between the tuples. However, for certain relations, such a subset may be the com-
plete set of attributes. In the instance of an EMPLOYEE relation, values of an attrib-
ute such as Emp# may be sufficient to distinguish between employee tuples. Such a
subset of attributes, let us say X of a relation R(R), X C R, with the following time-
independent properties is called the key of the relation:

® Unique identification: In each tuple of R, the values of X uniquely identify
-that tuple. To elaborate, if s and t represent any two tuples of a relation and if
the values .s[X] and t[X] for the attributes in X in the tuples s and t are the
same, then s and t must be the same tuple. Therefore, s[X] = t[X] > s=t.
Here the symbol = is used to indicate that the left-hand side logically implies
the right-hand side.

¢ Nonredundancy: No proper subset of X has the unique identification property
i.e., no attribute K € X can be discarded without violating the unique
identification property.

Since duplicate tuples are not permitted in a relation, the combination of all
attributes of the relation would always uniquely identify its wples. There may be
more than one key-in a refation; all such keys are known as candidate koys. One of
the candidate keys 1s chosen as the primary key; the others are known as alternate
keys. An attribute that forms part of a candidate key of a relation 1s called a prime
attribute.

160

Chapter 4 The Relational Model

Example 4.17 In many applications, arbitrary attributes are assigned to the objects and

4.2.6

these attributes play the role of keys. Emp# is such a key (the domain for
the attribute Emp# is application specific and unique for a given applica-
tion). A Social Security number in the U.S. and a Social Insurance number
in Canada also identify a person uniquely in these countries. Both numbers
are of nine digits and are assigned to individuals without any coordination
between these countries. It is likely that the same number may identify two
different individuals. Furthermore, there are many individuals who, having
lived and worked in both countries, have been assigned different values for
their Social Security numbers and Social Insurance numbers. W

Relationship

The key property and the fact that every tuple must have a key are used to capture
relationships between entities.

Example 4.18 An employee may perform different roles in the software development teams

working on different products. John Doe may be an analyst in the develop-
ment team for product ‘‘Super File System’ and manager of the team for
product “‘B* *1°°. The different job requirements are given in the relation
JOB_FUNCTION. ®

ASSIGNMENT is a relationship in Figure 4.3a between the entities Employee,
Product and Job_Function. A possible representation of this relationship is by usirg
the entities involved in the relationship:

ASSIGNMENT (Employee, Product, Job_Function)

Using the unique identification properties of keys we can replace the Employee,
Product, and Job_Function entities in ASSIGNMENT by their keys. The keys act as
surrogates for their respective entities. We can represent, let us say, the scheduled
duties of an employee by the relation scheme:

ASSIGNMENT (Emp#, Prod#, Job#)

ASSIGNMENT is a relation that establishes a relatjonship among three ‘‘owner”
relations. Such a relation may be thought of as an associative relation. The key of
the associative relation is always the union of the key attributes of the owner rela-
tions. Thus the key of the relation ASSIGNMENT is the combination of the attri-
butes Emp#, Prod#, Job#,.

The attributes Emp#, Prod#, and Job# in the relation ASSIGNMENT are
known as foreign keys. A foreign key is an attribute or set of attributes of a relation,
let us say R(R), such that the value of each attribute in this set is that of a primary
key of relation S(S) (R and S need not be distinct). For instance, we could not have
8 tuple in the ASSIGNMENT relation of Figure 3 with the value 127 for the attribute
Emp# unless there were a tuple in the EMPLOYEEL relation with that value for
Emp#. We look at rules applicable to primary and foreign keys in Section 4.2.8.

42 Relational Database 161

Figure 4.3 (a) E-R diagram for employee role in development teams; (b) corresponding relation
schemes; and (c) sample relations.
(a)
EMPLOYEE (Emp#, Emp_Name, Profession)
PRODUCT (Prod#, Prod_Name, Prod_Details)
JOB_FUNCTION (Job#, Title).
ASSIGNMENT (Emp#, Prod#, Job#)
b)
EMPLOYEE: PRODUCT:
Emp# Name Profession Prod# Prod_Name Prod_Details
101 Jones Analyst HEAP1 HEAP_SORT ISS module
103 Smith Programmer BINS9 BINARY_SEARCH ISS/R module
104 Lalonde Receptionist FM6 FILE_MANAGER ISS/R-PC subsys
106 Byron Receptionist B++1 B++_TREE ISS/R turbo sys
107 Evan VPR&D B++2 B++_TREE ISS/R-PC turbo
110 Drew VP Operations
112 Smith Manager-
ASSIGNMENT:
JOB_FUNCTION: Emp# ’ Prod# Job#
Job# Title 107 HEAP1 800
1000 CEO 101 | HEAPI 600
\1 900 President 110 | BINS9 800
103 | HEAPt 700
| s Manager 101 | BINS9 700
i| 700 Chief Programmer 00
600 Analyst 110 | FM6 8
107 B++1 800
y ©

427

Relational Operations

Codd (Codd 72) defined a *‘relationally complete’’ set of operations and the collec-
tion of these, which take one or more relations: as their operand(s), forms the basis
of relational algebra (to be discussed in Section 4.3). In the same paper Codd in-
cluded the formal definition of relational calculus (now known as tuple calculus). An

Chapter 4 The Relational Model

Figure G Foreign keys.
Emp# Name Manager

101 Jones @

103 Smith 110
104 Lalonde 107
107 Evan 110
110 Drew 112
112 Smith 112

(We can see that using a single null value for all cases can cause problems.
Such problems are a topic of research and beyond the scope of this text.)

Definition:

integrity Rule 2 (Referential Integrity):

Given two felations R and S, suppose R refers to the relation S via a set of
attributes that forms the primary key of S and this set of attributes forms a
foreign key in R. Then the value of the foreign key in a tuple in R must either
bcequaltothepﬁmarykeyofampleoqurbeenﬁrclynull. ’

If we have the attribute A of relation R(R) defined on domain D and the primary
key of relation S(S) also defined on domain D, then the values of A in tuples of R(R)
must be either null or equal to the value, let us say v, where v is the primary key
value for a tuple in S(S). Note that R(R) and S(S) may be the same relation. The
tuple in S(S) is called the target of the foreign key. The primary key of the refer-
enced relation and the attributes in the foreign key of the referencing relation could
be composite.
Referential integrity is very important. Because the foreign key is used as a
surrogate for another entity, the rule enforces the existence of a tuple for the relation
corresponding to the instance of the referred entity. In Example 4.19, we do not
want a nonexisting employee to be manager. The integrity rule also implicitly defines
the possible actions that could be taken whenever updates, insertions, and deletions
are made.
If we delete a tuple that is a target of a foreign key reference, then three explicit
possibilities exist to maintain database integrity:
® All tuples that contain references to the deleted tuple should also be deleted.
This may cause, in tumn, the deletion of other tuples. This option is referred to
as a domino or cascading deletion, since one deletion leads to another.

® Only tuples that are pot referenced by any other tuple can be deleted. A tuple
referred by other tuples in the database cannot be deleted.

® The tuple is deleted. However, to avoid the domino effect, the pertinent foreign

kcy attributes of all referencing tuples are set to null.

4.3 Relational Algebra 168

4.3

Similar actions are required when the primary key of a referenced relation is
updated. An update of a primary key can be considered as a deletion followed by an
insertion.

The choice of the option to use during a tuple deletion depends on the applica-
tion. For example, in most cases it would be inappropriate to deleie all employees
under a given manager on the manager’s departure; it would be more appropriate to
replace it by null. Another example is when a department is closed. If employees
were assigned to departments, then the employee tuples would contain the depart-
ment key too. Deletion of department tuples should be disallowed until the employ-
ees have either been reassigned or their appropriate attribute values have been set to
null. The insertion of a tuple with a foreign key reference or the update of the foreign
key attributes of a relation require a check that the referenced relation exists. '

Although the definition of the relational model specifies the two integrity rules,
it is unfortunate that these concepts are not fully implemented in all commercial
relational DBMSs. The concept of referential integrity enforcement would require an
explicit statement as to what should be done when the primary key of a target tuple
is updated or the target tuple is deleted.

Relational Algebra

4.3.1

Relational algebra is a collection of operations to manipulate relations. We have
informally introduced some of these operations such as join (to combine related tu-
ples from two relations), selection (to select particular tuples of a relation) and pro-
jection (to select particular attributes of a relation). The result of each of these oper-
ations is also a relation.

Relational algebra is a procedural language. It specifies the operations to be
performed on existing relations to derive result relations. Furthermore, it defines the
complete scheme for each of the result relations. The relational algebraic operations
can be divided into basic set-oriented ‘operations and relational-oriented operations.
The former are the traditional set operations, the latter, those for performing joins,
selection, projection, and division.

Basic Operatiqns

Basic operations are the traditional set operations: union, difference, intersection, and
cartesian product. Three of these four basic operations—union, intersection, and dif-
ference—require that operand relations be union compatible.2 Two relations are
union compatible if they have the same arity and one-to-one correspondence of the
attributes with the corresponding attributes defined over the same domain. The carte-
sian product can be defined on any two relations. Two relations P(P) and Q(Q) are

2We assume that in the case of the union, difference, and intersection operations, the names of the attributes of the operand
relations are the same and that the result relation inherits these names. If these names are not identical, some convention, for
instance, using the names from the first operand relation, must be provided to assign names to the attributes of the result

relation.

168

Chapter 4 The Relatiqnal Model

The intersection operation 1s reaity unnecessary. It can be very simply expressed
as:

PNQ=P-P-0Q

It is, however, more convenient to write an expression with a single intersection
operation than one involving a pair of difference operations.

Note that in these examples the operand and the result relation schemes, includ-
ing the attribute names, are identical i.e., P = Q = R. If the attribute names of
compatible relations are not identical, the naming of the attributes of the result rela-
tion will have to be resolved.

Cartesian Product (x)

The extended cartesian or simpiy ilic cartesian product of two relations is the conca-
tenation of tuples belonging to the two relations. A new resultant relation scheme is
created consisting of all possible combinations of the tuples.

R=PxQ

where a tuple r € R is given by {t, || t, | t, € P /A t; € Q}, i.e., the result relation is
obtained by concatenating each tuple in relation P with each tuple in relation Q.
Here, | represents the concatenation operation.

The scheme of the result relation is given by:

R=P|[Q
The degree of the result relation is given by:

IRl = [P + |Q|
The cardinality of the result relation is given by:

IR| = [P} *|Q|

Example 4.24 The cartesian product of the PERSONNEL relation and SOFTWARE_

PACKAGE relations of Figure Ji is shown in Figure Jii. Note that the rela-
tions P and Q from Figure H of Example 4.20 are a subset of the PERSON-
NEL relation. W

4.3 Relational Algebra 169

Figure J (i) PERSONNEL(Emp#,Name) and SOFTWARE-PACK-
AGES(S) represent employees and software packages re-
spectively; (ii) the Cartesian product of PERSONNEL and

SOFTWARE_PACKAGES.
PERSONNEL.: SOFTWARE_PACKAGES:
Id | Name s
101 Jones 3
103 Smith 1,
104 Lalonde
106 Byron
107 Evan
110 Drew
112 Smith

@

P.Id P.Name s

101 Jones 1,
10¢ Jones),
. 103 Smith 5
103 Smith)

104 Lalonde 1A
104 Lalonde)

106 Byron 5
106 Byron),
107 Evan 5
107 Evan 5
110 Drew 5
110 Drew 5
112 Smith 5
112 Smith I
(ii) |

The union and intersection operations are associative and commutative; there-
fore, given relations R(R), S(S), T(T):

RUSUT) =RUS)UT=EBUR)UT=TUSUR) =
RNSNT)=RNS)NT =. ..

The difference operation, in general, is noncommutative and nonassociative.

R-S#*S§S~-R noncommutative
— (S — T) # (R — S) — T nonassociative

172 Chapter 4 The Relational Model

R

Figure 4.6 '(a) Graphical representation of selection that selects a subset of the tuples; (b) result
of selection over PERSONNEL for /d < 105.

.
1

(@)

PERSONNEL: Result of selection
1d Name 1d Name
101 Jones 101 Jones
103 Smith 103 Smith
104 Lalonde 104 Lalonde
106 Byron
107 Evan
110 Drew
112 Smith

(b)

Any finite number of predicates connected by Boolean operators may be speci-
fied in the selection operation. The predicates may define a comparison between two
- domain-compatible attributes or between an attribute and a constant value; if the
: comparison is between attribute A, and constant ¢, then ¢, € Dom(A,).
Given a relation P and a predicate expression B, the selections of those tuples
of relation ?\t\hat satisfy the predicate B is a relation R written as:

R = op(P) -

The above éibression could be read as ‘‘select those tuples t from P in which the

predicate ?B(t) is true.”” The set of tuples in relation R are in this case defined as
follows: -

R={t|tePAB @}

Join (D<)

The join operator, as the name suggests, allows the combining of two relations to
form a single new relation. The tuples from the operand relations that participate in
the operation and contribute to the result are related. The join operation allows the
processing of relationships existing between the operand relations.

43 Relational Algebra 173

In Figure D of Example 4.3 we illustrated an example of a join of the relations

SOME_DBMS and VERSION. We joined those tuples of the two relations that had
the same value for the common attribute Name defined on a common domain. In this
case, this common value was used to establish a relationship between these relations.
Note that referential integrity dictates that a tuple in VERSION could not exist with-
out a tuple in SOME_DBMS with the same value for the Name attribute. Join is
basically the cartesian product of the relations followed by a selection operation.

Exampie 4.26

In Figure 4.3 we encountered the following relations:

ASSIGNMENT (Emp#, Prod#, Joo#)
JOB_FUNCTION (Job#, Title)

Suppose we want to respond to the query ‘‘Get product number of assign-
ments whose development teams have a chief programmer.”’ This requires
first computing the cartesian product of the ASSIGNMENT and JOB.
FUNCTION relations. Let us name this product relation TEMP. This is
followed by selecting those tuples of TEMP where the attribute Title has the
value chief programmer and the value of the attribute Job# in ASSIGN-
MENT and JOB_FUNCTION are the same. The required result, shown be:
low, is obtained by projecting these tuples on the attribute Prod#. The
operations are specified below:

TEMP = (ASSIGNMENT x JOB_FUNCTION)

Tprod#{(OTitle = *chief programmer’ /A ASSIGNMENT.Job = JOB_FUNCTION .Job#
(TEMP))

Prod#

HEAP1
BINS9

In another method of responding to this query, we can first select those
tuples from the JOB_FUNCTION relation so that the value of the attribute
Title is chief programmer. Let us call this set of tuples the relation TEMP1.
We then compute the cartesian product of TEMP1 and ASSIGNMENT, call-
ing the product TEMP2. This is followed by a projection on Prod# over
TEMP2 to give us the required response. These operations are specified
below:

TEMP1 = (Griy. = -cmdmmw‘(JOB_FUNCTION))

TEMP2 = (O AsSIGNMENT Job# = 10B_FUNCTION Job#(ASSIGNMENT X
TEMP1))

Tproae(TEMP2) gives the required result. B

Notice that in the selection operation that follows the cartesian product we take

only those tuples where the value of the attributes ASSIGNMENT .Job# and JOB_
FUNCTION.Job# are the same. These combined operations of cartesian product

followed by selection are the join operation. Note that we have qualified the identi-

cally named attributes by the name of the corresponding relation to distinguish them.

MANCALORE

176 Chapter 4 The Relational Model

Consider the ASSIGNMEN 1 relation of Figure 4.3c. If we want to find the
coworkers in all projects (but not necessarily doing the same job) we can
join ASSIGNMENT with itself on the Prod# attribute. However, to have
unique attribute names in the result relation, we can proceed as follows.
Copy ASSIGNMENT into COASSIGN(Emp#, Prod#, Job#) and then
perform the operation given below, using qualified attribute names. The re-
sult of the operation is shown in Figure Kb. Note that a simple join of
ASSIGNMENT with itself, using the definition of natural join, gives the
original relation:

T(ASSIGNMENT. Emp# COASSIGN. Emp#)(ASS]GN MENTD><ICOASSIGN)
ASSIGNMENT.Prod# = COASSIGN.Prod#

Formally, the natural join of P(P) and Q(Q) is performed on the attributes of P
and Q defined on common domains, i.e., P N Q. The resultant relation consists of
the attributes P U Q.

In the cartesian product of two relations, we take a tuple from each relation and
concatenate them to obtain a tuple in the result relation. Any duplication of attributes
in the tuples, as well as duplicate tuples, remains. (Note that duplicate tuples are not
generated in a cartesian product of two proper relations.) In a relational join, we
select the subset of the product tupies-that satisfy the join predicates. In an equi-join,
the predicate involves equality constraints. In a natural join, which also involves
equality constraints, the common attributes are not duplicated. In the majority of

“cases when we speak of a join, we are actually speaking about the natural join.

If two relations that are to be joined have no domain-compatible attributes, the
natural join operation is equivalent to a simple cartesian product. If they have iden-
tical relation schemes, the natural join operation is an intersection operation.

We can summarize the above discussion on the various types of join operations
using the cartesian product as follows:

® The equi-join and the theta join are horizontal subsets of the cartesian product.
This is equivalent to applying a selection to the resulting tuple of the cartesian
product. The selection is explicitly specnﬁed in the theta join and implicitly
specified in the equi-join.

® The natural join is equivalent to an equi-join with a subsequent projection to
eliminate the duplicate attributes. In this sense, a natural join is both a
horizontal and vertical subset of the cartesian product.

Division ()

Before we define the division operation, let us consider an example.

Example 4.28 Given the relations P(P) and Q(Q) as shown in Figure Li, the result of
dividing P by Q is the relation R and it has two tuples. For each tuple in R,
its product with the tuples of Q must be in P. In our example (a;,b,) and
(a;,by) must both be tuples in P; the same, is true for (as,b;) and (as,b,).

43 Relational Algebra 177

Figure L Examples of the division operation. () R = P + Q; (i) R =
P+ Q(Pisthe sameas inparti); (i) R =P - Q(Pis
the same as in parti); (iv) R = P + Q (P is the same as in

part i).
P(P): QQ): R(R) (result):
A B B A
a; t;| b| 3
a; b, b; ’ as
a b|
a3 b|
a b,
as b]
as b,
(i)
QQ): then RR) is:
B A
b| a
a
a3
as
QQ: then R(R) is:
B A
b
b,
b,
(iii)
QQ): then R(R) is:
B . A
a
a
a3
ay
as
(iv)

Simply stated, the cartesian product of Q and R is a subset of P.

In Figure Lii, the result relation R has four tuples; the cartesian product
of R and Q gives a resulting relation’ which is again a subset of P.

In Figure Liii, since there are no tuples in P with a value b, for the

180 Chapter 4 The Relational Model

Figure 4.7 Sample database

EMPLOYEE | PROJECT
EMPLOYEE: ASSIGNED_TO
Emp# Name Project# Emp#
101 Jones COMP453 101
103 Smith COMP354 103
104 | Lalonde COMP343 | 104
106 Byron COMP354 104
107 Evan COMP231 106
110 Drew COMP278 106
112 Smith COMP353 106
COMP354 106
COMP453 106
COMP231 107
COMP353 107
COMP278 110
COMP353 112
COMP354 112

PROJECT:

Projec# Project Name | Chief Architect

COMP231 | Pascal 107
COMP278 | Pascal/Object 110
COMP353 | Database 107
COMP354 | Operating Sys 104
COMP453 | Database 101

relationship ASSIGNED_TO between them. Some sample tuples from these relations
are shown in Figure 4.7.

PROJECT (Project#, Project_Name, Chief_Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED_TO (Project#, Emp#)

Example 4.30 **Get Emp# of employees working on project COMP353."* To evaluate this
query, we select those tuples of relation ASSIGNED_TO such that the value

of the Project# attribute is COMP353. We then project the result on the
attribute Emp# to get the response relation. The query and the response
relation are shown below:

Temp#(TProjecrs = ‘compssy (ASSIGNED_TO))

4.3 Relational Algebra - 181

~Emp#)

106
107
112

The following example entails a join of two relations.

Example 4.31 | ‘‘Get details of employees (both number and name) working on projeci
COMP353.”" The first part of the evaluation of this query is the same as in
the query in Example 4.30. It is, however, followed by a natural join of the
result with EMPLOYEE relation to gather the complete details about the
employees working on project COMP353. The result and the the query are
shown below:

EMPLOYEE DX g 6(Oprojecr# = .comp3s3'(ASSIGNED_TO))

Emp# Name

106 Byron
107 Evan

112 Smith
Im: -

Example 4.32 requires using three relations to generate the required response.

Example 4.32 *‘Obtain details of employees working on the Database project.”” This query
requires two joins. The first step is to find the number(s) of the project(s)
named Database. This involves a selection of the relation PROJECT, fol-
lowed by a projection on the attribute Project#. The result of this projection
is joined with the ASSIGNED_TO relation to give tuples of the ASSIGNED
-TO involving Database. This is projected on Emp# and subsequently
joined with EMPLOYEE to get the required employee details. The query in
relational algebra and the result are shown below:

EMPLOYEE DX ‘ITE,,,P‘(ASSIGNED_TO > (wl’rajm# (oProjecl_Nam =
‘Dasbase’ (PROJECT))))

Emp# Name

101 Jones
106 Byron
107 " ‘Evan

112 Smith

184

Chapter 4 The Relational Model

4.4

(TEmpe(ASSIGNED_TO D Teroject#(TEmp# = 107(ASSIGNED_TO)))) — 107

Emp#

106
112

Relational Calculus

Tuple and domain calculi are collectively referred to as relational calculus. As we
have seen, queries in relational algebra are procedural. In general, a user should not
have to be concerned with the details of how to obtain information. In relational
calculus, a query is expressed as a formula consisting of a number of variables and
an expression involving these variables. The formula describes the properties of the
result relation to be obtained. There is no mechanism to specify how the formula
should be evaluated. It is up to the DBMS to transform these nonprocedural queries
into equivalent, efficient, procedural queries. In relational tuple calculus, the vari-
ables represent the tuples from specified relations; in relational domain calculus, the
variables represent values drawn from specified domains.

Relational calculus is a query system wherein queries are expressed as variables
and formulas on these variables. Such formulas describe the properties of the re-
quired result relation without specifying the method of evaluating it.

Relation calculus, which in effect means calculating with relations, is based
on predicate calculus, which is calculating with predicates. The latter is a formal
language used to symbolize logical arguments in mathematics. In the following
paragraphs we briefly introduce predicate calculus; additional details are given in
Chapter 16.

In formal logic the main subject matter is propositions. If, for instance, p and q
are propositions, we can build other propositions “‘not p,” “‘p or q,” *“‘p and q,”’
anq/'so on. In predicate calculus, propositions may be built not only out of other
propositions but also out of elements that are not themselves propositions. In this
manner we can build a proposition that specifies a certain property or characteristic
of an object.

Propositions specifying a property consist of an expression that names an indi-
vidual object (it may ‘also be used to designate an object), and another expression,
called the predicate, that stands for the property that the individual object possesses.

Example 4.38 Consider these statements:

BCD is a company
WXY is a company
Jill is an analyst
John is an analyst
Canada is a country
U.S.A. is a country

4.4 Relational Calculus - 185

Each of these is a statement about an object having a certain feature or
property In these examples, the parts ‘‘is a company,’” “‘is an analyst,”
*‘is a country’’ are instances of predxcates Each describes some property or
characteristic of an object. W

A convenient method of writing the statements of Example 4.38 is to place the
- predicate first and follow it with the object enclosed in parentheses. Therefore, the
statement ‘‘BCD is a company’’ can be written as ‘‘is a company(BCD).”” Now we
drop the *‘is a’’ part and write the first statement as ‘‘company(BCD).’” Finally, if
we use symbols for both the predicate and the object, we can rewrite the statements
of Example 4.38 as P(x). The lowercase letters from the end of the alphabet (. . .
X, ¥, z) denote variables, the beginning letters (a, b, ¢, . . .) denote constants, and
uppercase letters denote predicates. P(x), where x is the argument, is a one-place or
monadic predicate. DBMS(x) and COMPANY(y) are examples of monadic predi-
cates. The variables x and y are replaceable by constants (or names of individual
objects) such as DBMS(ISS).
The use of constants and variables is similar to that in some high-level
guages. A constant specifies a particular value or object; a variable is used
holder for the values in an expression or procedure.

Example 4.39 Consider these statements: I...-'JI:;AI{.'DRE
575 001,
Jill is taller than John

WXY is bigger than BCD

Canada is north of the U.S.A.

In these statements, the predicates ‘‘is taller than,”” *‘is bigger than,”’
““is north of”’ require two objects and are called two-place predicates. &

In general, we have predicates of degree n, where the predicate takes n argu-
ments. In the case of bigger_than(WXY, BCD), the predicate BIGGER_THAN spec—
ifies the relation between WXY and BCD.

Example 4.40 Let DBMS_TYPE(x,y) specify the relation between DBMSs and their data
model. The predicate DBMS_TYPE takes two arguments. &

A predicate followed by its arguments is called an atomic formula. Examples
of these are DBMS(x), COMPANY(y), and DBMS_TYPE(x,y).

We stated earlier that predicate calculus is a formal language. A language con-
sists of symbols. We have already seen some of the primitive symbols, i.e., varn-
ables, constants, and predicates. We can also specify logical connectors such as
“‘not’’ or negation, denoted by =1, ‘‘or’’ (\/), ‘‘and”’ (/\), and ‘‘implication’’ (—).

Atomic formulas may be combined using the logical connectors to generate for-
mulas such as P(X) A\ Q(y), P(x) \V Q(y), and so on. DBMS(ISS) N\ COM-
PANY(BCD), for instance, can represent “ISSisa DBMS and BCD is a company.’

188

Chapter 4 The Relational Model

In this formulation, we specify the set of tuple$ t(Emp#) such that the predicate
is true for each element of that set. The predicate specifies that there exists some
tuple, v, in the relation ASSIGNED_TO such that it has the value COMP353 for the
Project# attribute. Also, the value for the Emp# attributes of the result tuple t is
the same as that for the tuple u. :

Free variables appear to the left of the | (bar) symbol. The variable t is a free
tuple variable in the above formula and assumes whatever attributes and correspond-
ing values, assigned to it by the formula. The formula restricts t to the relation
scheme (Emp#).

Examblo 4.43 Consider this query: ‘‘Obtain a list of employees (both numbters and names)

working on the project COMP353,’’ which can be rephrased as: ‘‘Obtain
employee details for those employees assigned to the project COMP353.”"

To verify whether or not an employee is working on COMP353, we
can compare the employee’s Emp# with Emp# values of tuples in the re-
lation ASSIGNED_TO. What we are really specifying is that ‘‘for the em-
ployee whose details we want, there exists a tuple in the relation ASSIGNED
-TO for that employee with the value of the attribute Project# in that tuple
being COMP353.”" This is a calculuslike formulation for our query. In the
database we use surrogates to represent entities. For example, Emp# is used
to represent an employee in the ASSIGNED_TO relation (Project# is used
to represent a project). To check if an employee is working on some project,
we would need to compare the employee’s surrogate, Emp#, from EM-
PLOYEE, with the tuples of the ASSIGNED_TO relation containing the
project’s surrogate, Project#. Thus, the query can be reformulated as: ‘‘Get
those tuples in employee relation such that there exists an ASSIGNED_-TO
tuple with ASSIGNED_TO.Emp# = EMPLOYEE.Zmp# and ASSIGNED_
TO.Project# = COMP353.”

In tuple calculus this can be specified as:

{t | 3e(e € EMPLOYEE N e[Emp#] = t[Emp#]
N e[EmpName] = t{EmpName]
A u(u € ASSIGNED_TO N u[Emp#] = e[Emp#]
N u[Project#] = 'COMP353"))}

The above may be simplified to the following form where the domain of the
free variable t is the relation EMPLOYEE.

{t | t e EMPLOYEE
A 3u(u € ASSIGNED_TO A u[Emp#] = t{Emp#]
A ufProject#] = 'COMP353"))} n

In the tuple calculus query formulations given above, we have only specified
the characteristics of the desired result. The system is free to decide the operations
and their execution order to satisfy the request. For comparison, a relational algebra
like query would have to be stated as, ‘‘Select tuples from ASSIGNED_TO such
that Project# = 'COMP353’ and perform their join with the employee relation,
projecting the results of the join over Emp# and EmpName.” It is obvious that a
calculus query is much simpler because it is devoid of procedural details.

4.4 Relational Calculus 189

Tuple Calculus Formulas

At this point it is useful to see how tuple calculus formulas are derived. A variable
appearing in a formula is said to be free unless it is quantified by the existential (for
some) quantifier, 3 or the universal (for all) quantifier, \y. Variables quantified by
or are said to be bound.

In tuple calculus we define a qualified variable as t[A], where t is a tuple vari-
able of some relation and A is an attribute of that relation. Two qualified variables,
s{A] and t[B], are domain compatible if attributes A and B are domain compatible.

Tuple calculus formulas are built from atoms. An atom is either of the forms
given below:

A;. x € R, where R is a relation and x is a tuple variable.

A;. x 0 y or x 0 c, where 0 is one of the comparison operators {=, #, <, <, >, =},
x and y are domain-compatible qualified variables, and c is a domain compatible-con-
~ stant.

For example, s[A] = t[B] is an atom in tuple calculus, where s and t are tuple »
variables.
Formulas (wffs) are built from atoms using the following rules:

B,. An atom is a formula.
B,. If f and g are formulas, then —f, (f), f\/ g, f A\ g, f — g are also ‘>rmulas.

B,. If f(x) is a formula where x is free, then Ix(f(x)) and Wwx(f(x)) are also formulas;
however, x is now bound. :

The logical implication expression f — g, meaning if f then g, is equivalent to —f
V/ g. Some well-formed formulas in tuple calculus are given below:

u € ASSIGNED_TO (declares u as a tuple variable; the domain of u is the rela
tion ASSIGNED_TO)

u[Project#] = 'COMP353'
u € ASSIGNED_TO /\ u[Project#] = 'COMP353’

Ju(u € ASSIGNED_TO N\ s e EMPLOYEE
N u[Project#] = 'COMP353'
N\ S[Emp#] .= u[Emp#])
(here u is a bound variable, and s is a free variable)

Ju,t (u € ASSIGNED_TO A s € EMPLOYEE A t e PROJECT
/\ t[Project_Name] = ‘Database’
/\ u[Project#] = t[Project#)
N s(Emp#] = u[Emp#])

MANGALCRE

In the following examples we give some sample queries in tuple calculus using
the relations shown in Figuie 4.7.

190 Chapter 4 The Relational Model

Example 4.44

““Get complete details of employees working on a Database project,”” The
query can be stated as given below. In this case, the tuple variable s is
defined on the relation EMPLOYEE and it appears by itself to signify that
we are interested in all attributes of its domain relation. We are saying that

exist tuples u and t on the domain relations ASSIGNED_TO and PRO-
JECT, respectively, such that the conditions indicated below are true. The
tuple t has for the Project_Name attribute a value of ‘Database,’ and the
Project# in u and t are the same. The Emp# value of s and u are the same,
as well. Note that Ju,t(F(u,t)) is a shorthand notation for Ju(t(F(u,1))).

{s | s e EMPLOYEE
/\ 3u, t(t € PROJECT A\ t[Project_Name] = 'Database’
/\ u € ASSIGNED_TO A\ u[Project#)} = t[Project#]
/\ SIEmp#} = u[Emp#))}

The query “Get complete details of employees working on all Database
projects’’ can be expressed as follows:

{s | s e EMPLOYEE ;
A\ \(t € PROJECT A\ t[Project_Name] = 'Database’
— Ju(u € ASSIGNED_TO A u[Project#] = t[Project#)
N\ S[Emp#) = u[Emp#])}

An alternate method of writing this query without the logical implication is
to replace f — g by its equivalent form —f \/ g as follows:

{s | s e EMPLOYEE
A \/(t € PROJECT \/ t[Project_Name] + 'Database’
V Ju(u € ASSIGNED_TO A u[Project#] = t[Project#]
N's [Emp#] = u[Emp#))} m

Any number of tuple variables can have the same relation as their domain as illus-
trated in the following example.

Example 4.43

““List the complete details about employees working on both COMP353 and
COMP354.”" In this instance, we require that there exist two tuples u,, u,
of the relation ASSIGNED_TO with the values COMP353 and COMP354
for the attribute Project#. The Emp# attributes of s, u,, and u, are equal.

{s | s e EMPLOYEE A 3u,,u, (u, € ASSIGNED_TO
/N u; € ASSIGNED_TO A W[Emp#] = w[Emp #]
N S[Emp#] = u,[Emp#] /\ w,[Project#] = 'COMP353'
A wylProject#] = 'COMP354')}

We modify the above query to read *‘List the complete details about em-
ployees working on either COMP353 or COMP354 or both.”’ Here we re-
quire that there exist tuples u; of the relation ASSIGNED_TO with the value
COMP353 or u, of the same relation with the value COMP354 for the at-
tribute Project#. The two “‘there exist’’ clauses are connected by the \/
operator. The Emp# attribute of s and either u, or u,, are equal.

4.4 Relational Calculus 191

{s | s € EMPLOYEE /\ 3u,(u, € ASSIGNED_TO
N\ S[Emp#] = w,[Emp#] /\ u,[Project#] = 'COMP353’
V/ Ju,y(u, € ASSIGNED_TO
N S[Emp#] = wlEmp#] /\ wy[Project#] = 'COMP354")}

This query can be simpliﬁedto the following form:

{s | s e EMPLOYEE A\ 3u,(u, € ASSIGNED_TO
N\'s [Emp#] = u,[Emp#] N\
(uy[Project#] = 'COMP353'\/ u,[Project#) = 'COMP354'))} W

The following example illustrates the use of the universal quantifier.

Example 4.46 ““Get the employee numbers of employees other than employee 107 who
work on at least all those projects that employee 107 works on.’’ Here a
qualified variable, t{Emp#], is used to indicate that we are interested in
finding the projection of tuple t on the attribute Emp#. The tuple t is from
the relaiion ASSIGNED_TO, such that for all tuples u, from ASSIGNED_
TO with u,[Emp#] = 107, there exists a tuple u, € ASSIGNED_TO with
w[Emp#] #+ 107. The value of the attribute Project# in u, is the same as
in u; with identical values in the attribute Emp# of tuples t and u,. The
tuple expression for this query is given below:

{t[Emp#]l t € ASSIGNED_TO N\
i, (u; € ASSIGNED_TO N\ u,[Emp#] = 107
— Ju,(u, € ASSIGNED_TO A u,[Emp#] + 107
N u[Project#] = uy[Project#]1/\ t{Emp#] = u,[Emp#)))}

Alternatively we can write this query without the logical implication by sub-
stituting its equivalent form —f \/ g as follows:

{t[Emp#]l t € ASSIGNED_TO N\
\vu,(u; ¢ ASSIGNED_TO \/ u,[Emp#] + 107
\/ 3u,(u; € ASSIGNED_TO A uy[Emp#] + 107
/\ uy[Project#] = uy[Project#1/\ t{IEmp#] = u,[Emp#1)))}

To avoid a procedural operation such as projection in a calculus query, we
could deftne t to be on the relation scheme (Emp#) and rewrite this query
expression as:

{Emp#)| \yu,(u, & ASSIGNED_TO \/ u, [Emp#] + 107
V Ju,(u, € ASSIGNED_TO A u,(Emp#] + 107
N wy[Project#) = uy[Project#\/\ t{Emp#] = u,[Emp#})} =

Negation and its transformation is illustrated in Example 4.47.

Example 4.47 ‘‘Get employee numbers ot empla)ees who do not work on project
COMP453.”” In this query we are imtdrested in a qualifi~d tuple variable.

192 Chapter 4 The Relational Model

t{Emp#], t € ASSIGNED_TO, to ‘satisfy the following condition: There
does not exist a tuple u in the same relation such that the Project# attribute
of u has the value COMP453 with identical values in the attribute Emp# of
tuples t and u. The tuple calculus expression for this query is given below:

{tlEmp#]| t € ASSIGNED_TO A\
—3(u € ASSIGNED_TO A\ uf[Project#] = 'COMP453'
N UEmp#] = u[Emp#])}

Alternatively, we can express this query in the following equivalent
form: \

{tiEmp#]| t € ASSIGNED_TO A\
\u(u ¢ ASSIGNED_TO \/ {Emp#] + u[Emp#]
V u[Project#] +# 'COMP453')} m

To find employees who work on all pmject@tWe use the universal quantifier and

logical implication. ‘

Example 4.48

*“Compile a list of employee numbers of employees who work on all proj-
ects.”” The qualified tuple variable t{[Emp#] satisfies the following
predicates: For all tuples p from PROJECT, there exists a tuple u in
ASSIGNED_TO such that the value of Project# in u and p are the same,
and furthermore, the value of the qualified tuple variables t{Emp#] and
ul[Emp#] are the same.

{tIEmp#]| t € ASSIGNED_TO A
\/p(p € PROJECT — Ju(u € ASSIGNED_TO
N\ plProject#] = u[Project#]
N HEmp#] = u[Emp#1))}

The above can be rewritten as:

{tIEmp#]| t € ASSIGNED_TO A ,
/p(p € PROJECT \/ Ju(u € ASSIGNED_TO
N\ plProject#] = u[Project#]
N UEmp#] = u[Emp#]))} m

The folihwing‘.example illustrates a method of finding employees who work at

least one of a selected group of projects.

Example 4.49

““Get employee numbers of employees, not including employee 107, who
work on at least one project that employee 107 works on.”” We are con-
cemed here with a tuple t such that there exist tuples s and u in the relation

" ASSIGNED_TO, such that for the tuples s and u, the value of Project# is
identical with the value of the attribute Emp#; in s, 107 and in t, not 107.
The value of the attribute Emp# in t and u is the same. This query can be
expressed in tuple calculus as follows:

3

4.4 Relational Calculus) 193

4.42

{tIEmp#]| t € ASSIGNED_TO N\
s, u (s € ASSIGNED_TO /\ u € ASSIGNED_TO
N\ s|{Project#] = u[Project#]
N s{Emp#] = 107
N t{Emp#] + 107
‘N {Emp#] = u[Emp#])} B

-

P(P) and Q(Q), where Q C P:
R=P+Q

The tuples in R are those projections of P on the set of attributes P—Q such
that each tuple in the relation Q, when concatenated with all the tuples in R, gives
the tuples in P. We can express this conditions for tuples in R as follows:

R = {t| tePlP—Q] N\ \/s(seQ/\(t]ls € P)}

To simplify the above, we can say that the tuples in R are those projection of
tuples in P such that for all tuples s in Q there is a tuple u in P, which when projected
on Q gives s and when projected on P—Q gives the tuples in R. In other words, the
tuples in R are elements of the projection of P, on P—Q, each of which when
concatenated with all tuples s of Q is an element of P. We can express this modifi-
cation to conditions for tuples in R as follows:

R = {t| teP[P—Q] N\ \ys(seQ — Ju(ueP N u[Q]=s N\ u[P—-Q]=t[P-Q)))}

From this second specification, we can express the division operation in terms
of the other relational algebraic operations as:

R=P+ Q= mp_oP) — mp_q(mp-oP) X Q) — P)

We illustrate the above using the relations P(P) and Q(Q) shown in Figure Li
of Example 4.28. The term mp_q(P) gives all objects in the relation P. Some of
these objects do not have all the properties given in Q. The term mp_o(P) X Q —
P gives those tuples of P that will not participate in the result of the division. To find
the objects that do not have all the properties in Q, we project these nonparticipating
tuples on the attributes P—Q. The result is obtained by subtracting these nonpar-
ticipating objects from all objects. These steps are illustrated in Figure 4.8.

Domain Calculus

As in tuple calculus, a domain calculus expression is of the form
{X | FeO}

where F is a formula on X and X represéms a set of domain variables. The expres-
sion characterizes X such that F(X) is true.
For the examples in this section, we continue to use the sume database that we

198

Chapter 4 The Relational Model

<a,b> € ASSIGNED_TO (declares a and b as domain variables defined on the

domain of the attributes of the ASSIGNED_TO relation)
a = 'COMP353'

<a,b> € ASSIGNED_TO N\ a = 'COMP353’
Ja,b (<a,b> € ASSIGNED_TO N <c,d> € EMPLOYEE A\ a = 'COMP353' A\
b=c¢c) .
3a,b,e,f (<a,b> € ASSIGNED_TO A <c,d> ¢ EMPLOYEE
N\ <e,f,g> € PROJECT
Ab=cNa=eAf = 'Database’)

(Note that g is used as a placeholder, so that we know what domain the variable
belongs to.)

Here we give some sample queries in domain calculus. We continue to use the
relations given below and shown in Figure 4.7 for these queries:

PROJECT (Project#, Project_Name, Chief_Architect)
EMPLOYEE (Emp#, EmpName)
ASSIGNED_TO (Project#, Emp#)

Furthermore, we use the domain variables P € Dom(Project#), n; € Dom(Project_
Name), ¢; € Dom(Chief_Architect), e, € Dom(Emp#), m; € Dom(EmpName), where
Dom(Project#), etc. are the domains of the corresponding attributes. The expression
<p1,€1> € ASSIGNED_TO evaluates as true if and only if there exists a tuple in
relation ASSIGNED_TO with the current value of the corresponding domain vari-
ables. As before we use the notation 3p,,€(P) as shorthand for 3p,Je,(P).

Example 4.52 The query ‘‘Compile the details of employees working on a Database pro-

Jject’” can be stated as:

{e.m | 3p,,e,,p,,n, (<p,,e,> € ASSIGNED_TO
N\ <e,m> € EMPLOYEE
N\ <p,,n,,¢,> € PROJECT
Ae, = e/Ap; = p,An, = 'Database’)} m

Any number of domain variables can be defined on the domains of the attributes
of a relation as illustrated below.

Example 4.53 Compile the details of employees working on both COMP353 and

COMP354.

{e.m| 3py,e,,pz.e2 (<e,m> ¢ EMPLOYEE
A <py,e;> € ASSIGNED_TO
A <p,,e,> € ASSIGNED_TO
Ne=¢ Ne=c¢e,
A'p; = 'COMP353' A p, = 'COMP354')} m

44 Relational Calculus 197

wr

The use of the universal quantifier and logical implication is demonstrated in
Example 4.54.

Example 4.54 ““Obtain the employee numbers of employees, other than employee 107,
who work on at least all those projects that employee 107 works on.”

{e | <p,e> € ASSIGNED_TO Y p;.¢
(<pn,e1> € ASSIGNED_TO N ¢; = 107
— (3p2,ex(<p2,€2> € ASSIGNED_TO
Ne, # 107 A p, = p2Ne = e}

An equivalent form of this query where the implication is replaced by the
\/ operator is given below:

{e | <p,e> € ASSIGNED_TO A\
A" pl,e|(<p|,el> ¢ASSIGNED._TO V € + 107
V (3p2,e2(<p2,€2> € ASSIGNED_TO
Ne, # 107 Ap =ppNe=¢))} B

Negation is illustrated in Example 4.55.

Example 4.53 “‘Get employee numbers of employees who do not work on the CO
project.”’
{e | 3p (<p,e> € ASSIGNED_TO

AV pser (<p1,e;> € ASSIGNED_TO

_Another example of the use of the universal qualifier and logical implication is
given below.

Example 4.56 ““‘What are the employee numbers of employees who work on all projects?”’

fe | 3 p(<p.e> € ASSIGNED_TO
AV pi(<p1,m,c;> € PROJECT
- <p;,e> € ASSIGNED_TO))} ®

The domain calculus formula to find employees who are assigned to at least one
of a selected group of projects is given in Example 4.57.

Example 4.57 “Get the employee numbers of ' employees, other than employee 107, who
work on at least one project that employee 107 works on.”’

198

Chapter 4 The Relational Model

4.5

{e | 3 p,pi.e;,p2.e2(<p,e> € ASSIGNED_TO
N <p,,e;> € ASSIGNED_TO
A <py.e2> € ASSIGNED_TO
Nea # 10TAp, =p,Ne, =107 Ne=¢) B

Concluding Remarks on Data Manipulation

Consider tuple calculus expression:
{x|x ¢R}

Evaluating this expression generates tuples that are not in the relation R and entails
generating an infinite number of tuples. If the domain of the tuple variable x were a
relation scheme X, the tuples generated would be an indeterminate number of such
tuples on the relation scheme X. However, in spite of this limitation, the number of
tuples generated will be immense and the majority of these tuples are not likely to
be in the actual database. In a database application an additional limitation is im-
posed: that all evaluating is done with respect to the content of the database at the
time of the evaluation of the query. This further limitation generates, for the above
expression, only those tuples that are in the database and not in the relation R.
However, this evaluation is also prohibitively expensive in terms of computing re-
sources used.

For relational calculus, by definition, infinite relations might be generated. In
practice, this might be limited to finite relations because of condition imposed in the
formula. It is therefore clear that the tuple relation calculus formulas are not only
wifs, but they do not generate infinite relations. This in turn requires that the domain
of the formula be clearly defined. The domain of a formula F(X), where X is a set
of tuple variables, is the set of values either appearing explicitly in the formula or
being referenced in it. The values that appear explicitly are constants and the values
being referenced are fromn the relations appearing in the formula. Each such relation
is assumed to be of finite cardinality. The purpose of defining the domain of a for-
mula is to ensure that the result relation generated by evaluating the formula is also
in the domain of the formula. This ensures that the result relation is finite and only
tuples from the domain of the formula have to be examined in evaluating the expres-
sion. Such a tuple relational calculus expression is said to be safe.

The concept of safety can be applied to domain calculus expressions by defining
a domain of a domain calculus expression and by ensuring that the result relation is
within this domain. If we limit the relational calculus expressions to safe expressions,
then tuple calculus and domain calculus are equivalent. Furthermore, both are equiv-
alent to relational algebra. This means that for every safe relational calculus expres-
sion there exists a relational algebraic expression and vice versa. Also, we can write
an equivalent domain calculus expression for a tuple calculus expression and vice
versa.

Even though the final calculus expression for a query is more compact than an
algebraic expression, it does not mean that calculus is a better interface, particularly
with complex queries. It is natural to break such queries down into smaller steps (as
in the case of the algebraic formulation; we presented a few examplss of this in
Section 4.3.3) and then compose the steps into a neat calculus formula. This may be

4.6 - uysical Implementation lssucs 199

the reason behind the success of SQL as a relational query language. SQL is clearly
not assertional and includes intersection, union, and difference operations.

In Sections 4.3 and 4.4 we considered the features of relational data manipula-
tion operations using relational algebra and relational calculus, respectively. The data
manipulation language for the DBMS must supplement them with additional capabil-
ities, such as relation creation, deletion, and modifications. Facilities are also pro-
vided for the insertion, deletion, and modification of tuples. These additional opera-
tions enables users to manipulate and update the data contained in the database. In
the derivation operations, the attributes of one tuple are compared with attributes of
another tuple or constants. In the alieration operations, the attribute values are altered
or tuples are removed or inserted. As in the case of other relational operations, com-
patibility is also required in derivation and alteration operations.

A number of query languages based on the concepts of these sections have been
developed. Three of these query languages (SQL, QUEL, and QBE) have gained
wider acceptance than the others. SQL is in widespread use and, with an ANSI
standard definition, has become the de facto query language for relational database
systems. This in no way detracts from the elegance of QUEL. We consider all three
languages in Chapter 5.

Relational Algebra vs. Relational Calculus

4.6

The relational algebra operations described in Section 4.3 allow the manipulation of
relations and provide a means of formally expressing queries. The sequence of op-
erations necessary to answer the query is also inherent in the relational algebraic
expression. In other words, relational algebra is a procedural language. In Section
4.4 we considered two nonprocedural relational calculus query systems: tuple and
domain calculus. In calculus queries we specify only the information required, not
how it is obtained.

It can be proved that the expressive power of relational algebra and relational
calculus are equivalent (Ullm 82). This means that any query that could be expressed
in relational algebra could be expressed by formulas in relational calculus. Further-
more, any safe formula of relational calculus may be translated into a relational
algebraic query. _

There have been a number of proposed changes and additions to both relational
algebra and calculus; for instance, the need for aggregation (average, count, and
other such functions) and update operations in these query systems. Many researchers
recognize this as omissions from the original formulation of relational algebra and
calculus.

‘Physical Implementation issues

So far, we have considered the relational model and the operations defined in the
model. We have refrained from wmentioning any implementation issues because, to
the end user, these are of little concern. The relational algebra operations in some
respects define what is to be done, but even then the DBMS can optimize the actual
processing of the query and perform the operations in a different order (see Chapter

200 Chapter 4 The Relational Model

10 on query processing). .In relational calculi we do not even specify the operations.
To the users, the DBMS is a black box that insulates them from the details of file
definitions ‘and file management software as supported by the operating system. As
we mentioned in Chapter 1, one function of the DBMS is to provide physical data
independence.

The DBA cannot optimize the database for all possible query formulations.
Thus, for every reiation the anticipated volume of different types of queries, updates,
and so on is estimated to come up with an anticipated usage pattern. Based on these
statistics, decisions on physical organization are made. For example, it would be
inappropriate to provide an access structure (say a B*-tree) for every attribute of
every relation; these secondary access structures have storage and search overheads.

The DBMS can make use of all the features of the file management system. As
most DBMSs have versions that run on different machines and under different oper-
ating system environments, the DBMS may support file systems not available under
the host machine environment. Thus, every DBMS defines the file and index struc-
tures it supports. The DBA chooses the most appropriate file organization. In the
event of changes to usage patterns or to expedite the processing of certain queries, a
reorganization can take place.

A large number of queries requires the joining of two relations. It may be ap-
propriate to keep the joining tuples of the two relations either as linked records or
physically grouped into a single record.

We may consider a relation to be implemented in terms of a single (or multiple)

file(s) and a tuple of the relation to be a record (or collection of records). For the
e file, we may define a storage strategy, for example, sequential, indexed, or random,
Sl and for each attribute we can define additional access structures.
: The more powerful DBMSs allow a great deal of implementation detail to be
defined for the relations. The more common but less powerful DBMSs (mostly on
microcomputers) allow very simple definitions, for example, indexing on certain at-
tributes (this is usually a B*-tree index). Some systems require the index to be
regenerated after any modification to the indexing attribute values. Additional com-
mands for sorting and other such operations are also supported. The typical file or-
ganization is plain sequential. (In fact, many micro-based DBMSs confuse a relation
or table with a flat sequential file.)

A single relation may be stored in more than one file, i.e., some attributes in
one, the rest in others. This is known as fragmentation. This may be done to im-
prove the retrieval of certain attribute values; by reducing the size of the tuple in a
given file more tuples can be fetched in a single physical access. The system asso-
ciates the same internally generated identifier, called the tuple identifier, to the dif-
ferent fragments of each tuple. Based on these tuple identifiers a complete tuple is.
easy to reconstruct.

In addition to making use of the file system,? the DBMS must keep track of the
details of each relation and its attribute defined in the database. All such information
is kept in the directory. The directory can be implemented using a number of system-
defined and -maintained relations. For each relation, the system may maintain a tuple
in some system relation, recording the relation name, creator, date, size, storage

*To achieve satisfactory performance, many DBMSs develop their own file management systems and use disk input/output
routines that directly access the secondary storage devices.

